Topics in Learning Theory

Lecture 3: Concentration and Rademacher Complexity



Topics

e General Exponential inequalities for sum of independent variables
e Concentration inequality: McDiarmid’s inequality

e Symmetrization and Rademacher Complexity



Independent Variables and Concentration

o Let &y, ... &, beiid random variables.
e Law of large numbers: empirical mean converges to the true mean in
probability
1 mn
— Zfi —p E&;.
n 1=1

— the empirical mean is concenrated around the true mean when n is large.

e Given deviation € > 0, degree of concentration: measured by tail inequality
for

1 < .
P ﬁ;& —E& > e] one sided




or
P

1 — |
\g ;fi — E&| > 6] two sided

e Markov inequlaity (two sided): if f(u) > 0, then:

Bf(0, & — Bal)

1 n

e Chebyshev’s inequality:

P

%;&; —E& | > 6] < iVCL?“(fl)

ne?

can be proven using f(u) = u? (second moment)



— decays slowly when s large.

e Hoeffding’s inequality ( ; € [0;1]):

P[HZ i —E 1> | <exp(—2n ?
1=1
1 mn
P[HZ i —E 1< —]<exp(—2n 2)






























McDiarmid’s inequality

Theorem 1. Let&q, ..., &, be independent random variables. Consider a real-
valued function g(&1,...,&,) such thatVvi =1,...,n:

Sup ‘9(517 SR 767%) — 9(517 I 7575—175275’&'4—17 SR 7€n)‘ < Ci-

Then for all n > 0, with probability of at least1 — n,

In(1/1) <
2

9(&1, -, 6n) < E9(€1,---,€n)+\

)
I
—_

Remark: generalize Hoeffding’s inequality
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e proof is analogous

e obtain Hoeffding’s inequality for &; € [0, 1] and g(&4, . ..

,&n)

— % Z?:l fz
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Application to Learning

o We let
9(Sn) = sup [E¢(f ——Zc/ﬁ

fer

o If o(f(X),Y) € [0,1], then can take ¢; = 1 in McDiarmid’s inequality: with
probability 1 — »:

Exyo(£(X),Y) = =5 6(F(X.), Y:)

n <
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e McDiarmid gives /1/n rate at best
— similar to additive form of Hoeffding’s inequality

e In order to get fast 1/n rate, one requires more sophisticated concentration
inequality

— bernstein-type
— also requires localization techniques (localized Rademacher complexity)

— important developments in recent years
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Symmetrization

e Purpose: derive complexity measure using empirical quantities

— such as empirical covering number or empirical Rademacher complexity

e S\ ={(X/,Y/)}:iid copies of S,, = {(X;,Y;)}

e o;: iid Bernoulli with equal probability 41

18



Es,sup|Ex yo(f(X),Y) — L Z o(f(Xi), Yi)]

n <
=1

n

=FEg, sup[Eg — qu ), YY) —%qu

<Es, s, supl Z SUXD, YY)~ 3ol (X
1=1

n

_ES St SU.p Zo-qu - %ZO_Z¢

=1

<205, sup - 3 o0 (F(XD. V7).
1=1
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Rademacher Complexity

R(¢(H)) = Es,R(6(H)|Sr)
and
R(G(H)|Sy) = Eq sup >~ 06 (F(X]). 7).

e Learning Bound: if ¢ € [0, 1], then (McDiarmid)

Exyo(f ) < = Z o(f ) + 2R(¢(H)) +

In(1/n)

2n
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Estimating Rademacher complexity: L, covering number
and chaining

e Given S,,, L, empirical covering is the cover of ¢(cH ) with respect to metric:

AF. 1180 = [ 16X, Y0 — 67X, YO,

1=1

which we denote as Ny (¢(H), €]Sy,)

e Empirical L, covering number is smaller than empirical L., covering number.
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e Chaining bound for Rademacher complexity: there is universal C' > 0:

R(H|S,) < 0.5C inf
€0

1
€0 + / \/— In(1 + No(H, €|S,))de
€€ n

e Learning bound using empirical L, covering number: if ¢ € [0, 1]

Frrot00, 1) <23 000 1 + P2

+ CESn inf
€0

e Consequence of chaining bound:

€0 + /OEO \/% In(1 + No(o(H), eSn))de] |
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— if covering number Ny (¢(H), €]Sy,) = O(1/€P) for p < 2, then

R(H|Sn) = O(1/v/n)

— sharper than bound not based on the chaining argument: complexity in
the last lecture

inf{e : e > by/In[aNo(¢(H), €/4)/n]/n}

x No(d(H), €]Sn) < Noo((H), €)
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